Bachelor of Engineering (Mechanical) Honours
Edith Cowan University
About
Mechanical engineering is the branch of engineering that deals with the design, manufacture and maintenance of mechanical components and moving systems.
Areas of study within the course include a foundation in physical and engineering sciences, along with engineering mechanics, computer-aided design, computer-aided manufacturing, advanced engineering materials, mechanical design, thermodynamics, fluid mechanics, control systems, building services, and project management.
The course focuses on the development of knowledge and skills relevant to professional engineering practice, and along with a sound theoretical base, includes strong elements of practical problem-solving, teamwork and project development resulting in multiple technical and transferable skill competencies, and strong analytical skills to lead complex projects.
Students taking this course also have the option to undertake a specialist stream in motorsports.
This option provides a special focus on automotive design and motorsports engineering.
Structure
Students are required to complete 30 Core units, 2 Elective units and a Practicum unit.
Note: Students may include a Motorsports stream in their degree by enrolling in two specific units in place of the two Elective units. Students interested in taking this optional Motorsports stream should consult with the Course Coordinator before commencing studies, who will advise them on the sequence and timing of the electives and other units in their course to accommodate the inclusion of the Motorsports units.
Year 1 - Semester 1
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS1154 * | Introduction to Engineering | 15 |
ENS1115 | Materials and Manufacturing 1 | 15 |
ENM1102 | Engineering Drawing and Computer Aided Design | 15 |
MAT1250 | Mathematics 1 | 15 |
Year 1 - Semester 2
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS1101 | Engineering Mechanics | 15 |
ENS1180 | Introduction to Energy and Resource Engineering | 15 |
ENS1253 | Electrical Engineering 1B | 15 |
MAT1251 | Mathematics 2 | 15 |
Year 2 - Semester 1
Unit Code | Unit Title | Credit Points |
---|---|---|
CSP2151 | Programming Fundamentals | 15 |
ENS3243 | Structural Analysis | 15 |
ENS2159 * | Engineering Innovation and Ethics | 15 |
ENS5170 | Engineering Systems | 15 |
Year 2 - Semester 2
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS2110 | Materials and Manufacturing 2 | 15 |
ENS2113 | Engineering Dynamics | 15 |
ENS2214 | Computer Aided Design and Manufacturing | 15 |
ENS2160 | Thermodynamics | 15 |
Year 3 - Semester 1
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS2170 | Principles of Industrial Maintenance | 15 |
ENM3218 | Fluid Mechanics | 15 |
ENM2104 | Instrumentation and Measurement | 15 |
ENS3105 | Mechanical Design and Development | 15 |
Year 3 - Semester 2
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS5114 | Advanced Mechanical Design | 15 |
ENS3553 | Signals and Systems | 15 |
ENS5230 | Electrical Machines and Transformers | 15 |
ENS3190 | Mechanics of Solids | 15 |
Note: Students who receive a WAM of 70 per cent or above at the end of their third year of study will be invited to complete a graded Honours degree by taking the two Honours Thesis units in place of the standard project units in their fourth year. Students below this cut-off, or who decline the offer to undertake the Honours Thesis, will graduate with an ungraded Honours degree.
Year 4 - Semester 1
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS5111 | Engineering Practicum | |
ENS5261 | Advanced Materials and Manufacturing Systems | 15 |
ENS5253 | Control Systems | 15 |
ENS4152 ^ | Project Development | 15 |
Or | ||
ENS5145 ^ | Engineering Honours Thesis 1 | 15 |
Elective Unit | 15 |
Note: Students undertaking the graded Honours pathway should enrol into ENS5145 Engineering Honours Thesis 1 in place of ENS4152 Project Development.
Year 4 - Semester 2
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS5200 | Building Services | 15 |
ENS5543 | Engineering Management | 15 |
ENS4253 ^ | Engineering Project | 15 |
Or | ||
ENS5146 ^ | Engineering Honours Thesis 2 | 15 |
Elective Unit | 15 |
Note: Students undertaking the graded Honours pathway should enrol into ENS5146 Engineering Honours Thesis 2 in place of ENS4253 Engineering Project.
RECOMMENDED ELECTIVES
Unit Code | Unit Title | Credit Points |
---|---|---|
ENS2102 | Hydrostatics | 15 |
ENS2103 | Ship Design and Production | 15 |
ENS2180 | Offshore Science and Engineering | 15 |
ENS2257 | Microprocessor Systems | 15 |
ENS2456 | Digital Electronics | 15 |
ENS3245 | Steel Design | 15 |
ENS3551 | Electrical Networks | 15 |
ENS3554 | Data Communications and Computer Networks | 15 |
ENS5106 | Hydrology and Hydraulics | 15 |
ENS5180 | Finite Element Methods | 15 |
ENS5240 | Industrial Control | 15 |
ENS5442 | Robotics 1 | 15 |
ENS5209 | Process Control | 15 |
MAT3486 | Multivariate Calculus | 15 |
Note: Electives chosen from outside this list must be approved by the Course Coordinator.
Students wishing to undertake the Motorsports stream should select the following units in place of the two Elective units:
Unit Code | Unit Title | Credit Points |
---|---|---|
ENM1101 ^ | Race Car Anatomy | 15 |
ENM2209 ^ | Race Car Systems | 15 |
^ Core Option * Students will be assessed to see if they have achieved the ECU minimum standard of English language proficiency in this unit. Students who don't meet the minimum standard will be provided with appropriate English language support and development.
Entry requirements
Admission requirement (Band 4)
All applicants must meet the academic admission requirements for this course. The indicative or guaranteed ATAR is as published (where applicable) or academic admission requirements may be satisfied through completion of one of the following:
- AQF Diploma or equivalent;
- Successfully completed 0.5 EFTSL of study at bachelor level or higher at an Australian higher education provider (or equivalent);
- Special Tertiary Admissions Test;
- University Preparation Course;
- Indigenous University Orientation Course; or
- Aboriginal University Readiness Assessment.
English Language requirement (Band 3)
English competency requirements may be satisfied through completion of one of the following:
- Year 12 English ATAR/English Literature ATAR grade C or better or equivalent;
- Special Tertiary Admissions Test;
- IELTS Academic Overall band minimum score of 6.0 (no individual band less than 6.0);
- Successfully completed 1.0 EFTSL of study at bachelor level or higher in the UK, Ireland, USA, NZ or Canada;
- University Preparation Course;
- Indigenous University Orientation Course;
- Aboriginal University Readiness Assessment;
- AQF Diploma, Advanced Diploma or Associate Degree;
- Successfully completed 0.375 EFTSL of study at bachelor level or higher at an Australian higher education provider (or equivalent); or
- Other tests, courses or programs as defined in the Admissions Policy.
Course Specific Admission Requirements
All applicants are required to have Mathematics: Methods ATAR, with equivalents considered, and Physics ATAR or Engineering Studies ATAR, with equivalents considered. It is desirable that all applicants have Mathematics: Specialist ATAR, with equivalents considered.
Portfolio pathway applications are not accepted for this course.
Learning outcomes
- Demonstrate advanced knowledge of the underpinning natural and physical sciences and in depth understanding of specialist bodies of knowledge within the mechanical engineering discipline.
- Think critically, and apply established engineering methods and research skills to complex mechanical engineering problem solving.
- Apply systematic engineering synthesis and design processes to conduct and manage mechanical engineering projects, with some intellectual independence.
- Demonstrate conceptual understanding of the mathematics, numerical analysis, statistics and computer and information sciences which underpin the mechanical engineering discipline and fluently apply engineering techniques, tools and resources.
- Demonstrate clear and coherent oral and written communication in professional and lay domains.
- Demonstrate a global outlook and knowledge of contextual factors impacting the engineering discipline, including respect for cultural diversity and indigenous cultural competence.
- Demonstrate effective team membership and team leadership to implement engineering projects according to relevant standards of ethical conduct, sustainable practice and professional accountability.
- Demonstrate responsibility for own learning, professional judgement and an understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice.
Institution
